DEADLINE 48 HOURS

SHOW ALL THE WORKING STEP BY STEP PLEASE

ALSO POST THE ANSWERS ON THE SPACES PROVIDED BUT THE WORKING MUST BE PROVIDED IN A SEPARATE DCUMENT AS WELL AS THE SCETCHES

**The scenario**

**You can check Chegg for examples as i saw the they have completed the question but using different figures. But the work must be with no plagiarism and should be to the point**

Park Furnishings manufactures school and university classroom furniture. The company has two production plants, located at Easton and Weston. The Easton plant produce tables and chairs and the Weston plant produces desks and computer workstations. Park has a working day of 7.5 hours and employs twenty workers at each plant. You may assume that there is a total of 24 working days every month.

All Park products are manufactured using finished pressed wood and polished aluminium fittings. Including scrap, each table and desk uses 20 m2 of pressed wood whereas each chair and workstation needs 12.5 m2 and 30 m2 respectively. A total of 240000 m2 of pressed wood is available each month and is divided equally between the two plants. The aluminium fittings that reinforce the legs of all the production items are purchased from an outside supplier. Each plant can purchase up to 9500 boxes of fittings per month and one box is required for every item of furniture produced. Production times are 72 minutes per table, 18 minutes per chair, 90 minutes per desk and 2 hours per workstation.

The unit profit for chairs and tables are £39 and £72 respectively, whereas each desk and workstation generates profits of £105 and £142 respectively.

Park is considering combining operations of both plants into a single factory. This consolidation will have the advantage of combining all available production resources as well as reducing administration costs by £1420 per month; however they have estimated that the cost of renovating and equipping the factory will be £1100000. Due to the current financial position Park Furnishings is only prepared to go ahead with the combined operation if it saves money in the first year of operation.

Let

· x1 represent the number of *tables* made per month;

· x2 represent the number of *chairs* made per month;

· x3 represent the number of *desks* made per month;

· x4 represent the number of *workstations* made per month;

where x1,x2,x3,x4 ≥0

(a) **Easton**

Enter the constraints for the **Easton** plant and the expression to be optimised.

Maximise: x1 + x2

subject to

x1 + x2≤ [Wood]

x1 + x2≤ [Metal fittings]

x1 + x2≤ [Labour]

Sketch the constraints and hence find the values of

· (i) a,b,c, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x1-axis;

· (ii) d,e,f,the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x2-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter a:

Enter b:

Enter c:

Enter d:

Enter e:

Enter f:

Now draw a sample profit line on your graph. Choose a value of the profit (P>0) and using this value, find the values of

(i) g, the intersection of your sample profit line with the x1x1-axis;

(ii) h, the intersection of your sample profit line with the x2x2-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter P:

Enter g:

Enter h:

Determine the optimal solution for x1 and x2 to the nearest integer and the profit that this solution will generate and enter your solution below.

The optimal solution is x1= , x2=

Profit: £

Select the two constraints which intersect to give the optimal solution.

The optimal solution is the intersection of Select Wood Metal Fittings Labour x1 ≥ 0 x2 ≥ 0 with Select Wood Metal Fittings Labour x1 ≥ 0 x2 ≥ 0

(b) **Weston**

Enter the constraints for the **Weston** plant and the expression to be optimised.

Maximise: x3 + x4

subject to

x3 + x4≤ [Wood]

x3 + x4≤ [Metal fittings]

x3 + x4≤ [Labour]

Sketch the constraints and hence find the values of

· (i) a,b,c, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x3-axis;

· (ii) d,e,f, the intersections of the Wood, Metal Fittings and Labour constraint respectively with the x4-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter a:

Enter b:

Enter c:

Enter d:

Enter e:

Enter f:

Now draw a sample profit line on your graph. Choose a value of the profit (P>0) and using this value, find the values of

· (i) g, the intersection of your sample profit line with the x3x3-axis;

· (ii) h, the intersection of your sample profit line with the x4x4-axis;

Enter the values, to the nearest integer in the appropriate boxes below:

Enter P:

Enter g:

Enter h:

Determine the optimal solution for x3 and x4 to the nearest integer and the profit that this solution will generate and enter your solution below.

The optimal solution is x3= , x4=

Profit: £

Select the two constraints which intersect to give the optimal solution.

The optimal solution is the intersection of Select Wood Metal Fittings Labour x3 ≥ 0 x4 ≥ 0 with Select Wood Metal Fittings Labour x3 ≥ 0 x4 ≥ 0

(c) **Combined**

Enter the constraints for **combining** the plants and the expression to be optimised.

Maximise: x1 + x2 + x3 + x4

subject to

x1 + x2+ x3 + x4≤ [Wood]

x1 + x2+ x3 + x4≤ [Metal fittings]

x1 + x2+ x3 + x4≤ [Labour]

Determine the optimal solution for x1,x2,x3,and x4 and the profit that this solution will generate and enter your solution below. (* Enter the optimal solution correct to 3dp and the profit to the nearest pound.*)

The optimal solution is x1= , x2= , x3= , x4=

Profit: £

Is it economically sensible to combine the two plants? Select Yes No I do not know

Try it now!

How it works?

Follow these simple steps to get your paper done

Place your order

Fill in the order form and provide all details of your assignment.

Proceed with the payment

Choose the payment system that suits you most.

Receive the final file

Once your paper is ready, we will email it to you.

Our Services

Paper Helper has assembled a team of highly skilled writers with diverse experience in the online writing circles. Our aim is to become a one stop shop for all your Academic/ online writing. Check out below our amazing service!

Essays

At Paper Helper, we prioritize on all aspects that creates a good grade such as impeccable grammar, proper structure, zero-plagiarism, and conformance to guidelines. The principal purpose of essay writing is to present the author's evaluation concerning a singular subject about which they have made. Since Professionalism is the mother of every success, try our team of experienced writers in helping you complete your essays and other assignments.

Admissions

Admission Papers

You have been trying to join that prestigious institution you long yearned for, but the hurdle of an admission essay has become a stumbling block. We have your back, with our proven team that has gained invaluable experience over time, your chance of joining that institution is now! Just let us work on that essay.How do you write an admission essay? How do you begin the essay? For answers, try Quality Custom Writers Now!

Editing

Editing and Proofreading

Regardless of whether you're pleased with your composing abilities, it's never an impractical notion to have a second eye go through your work. The best editing services leaves no mistake untouched. We recognize the stuff needed to polish up a writing; as a component of our editing and proofreading, we'll change and refine your write up to guarantee it's amazing, and blunder free. Our group of expert editors will examine your work, giving an impeccable touch of English while ensuring your punctuation and sentence structures are top-notch.

Coursework

Technical papers

We pride ourselves in having a team of clinical writers. The stringent and rigorous vetting process ensures that only the best persons for job. We hire qualified PhD and MA writers only. We equally offer our team of writers bonuses and incentives to motivate their working spirit in terms of delivering original, unique, and informative content. They are our resources drawn from diverse fields. Therefore your technical paper is in the right hands. Every paper is assessed and only the writers with the technical know-how in that field get to work on it.

Coursework

College Essay Writing

If all along you have been looking for a trustworthy college essay service provider that provides superb academic papers at reasonable prices, then be glad that you search has ended with us. We are your best choice! Get high-quality college essay writing from our magnificent team of knowledgeable and dedicated writers right now!

Coursework

Quality Assignment/Homework Help

We give the students premium quality assignments, without alarming them with plagiarism and referencing issues. We ensure that the assignments stick to the rules given by the tutors. We are specific about the deadlines you give us. We assure you that you will get your papers well in advance, knowing that you will review and return it if there are any changes, which should be incorporated.